Crown Pulse Series Service Documenation

The information furnished in this manual does not include all of the details of design, production, or variations of the equipment. Nor does it cover every possible situation which may arise during installation, operation or maintenance. If you need special assistance beyond the scope of this manual, please contact the Crown Technical Support Group.

1718 W. Mishawaka Road Elkhart IN 46517
Phone: (800) 342-6939 / (219) 294-8200
FAX: (219) 294-8301

CAUTION

TO PREVENT ELECTRIC SHOCK DO NOT REMOVE TOP OR BOTTOM COVERS. NO USER SERVICEABLE PARTS INSIDE. REFER SERVICING TO QUALIFIED SERVICE PERSONNEL. DISCONNECT POWER CORD BEFORE REMOVING REAR INPUT MODULE TO ACCESS GAIN SWITCH.

AVIS

À PRÉVENIR LE CHOC ÉLECTRIQUE N'ENLEVEZ PAS LES COUVERTURES. RIEN DES PARTIES UTILES À L'INTÉRIEUR. DÉBRANCHER LA BORNE AVANT D'OUVRIR LA mODULE EN ARRIĖRE.

WARNING
 TO REDUCE THE RISK OF ELECTRIC SHOCK, DO NOT EXPOSE THIS EQUIPMENT TO RAIN OR MOISTURE!

The lightning bolt triangle is used to alert the user to the risk of electric shock.

The exclamation point triangle is used to alert the user to important operating or maintenance instructions.

Cautions and Warnings

Exclamation Mark Symbol:
This symbol is used to alert the user to make special note of important operating or maintenance instructions.

Lightning Bolt Symbol:

This symbol is used to alert the user to the presence of dangerous voltages and the possible risk of electric shock.

DANGER: The outputs of the amplifier can produce LETHAL energy levels! Be very careful when making connections. Do not attempt to change output wiring until the amplifier has been off at least 10 seconds.

WARNING: This unit is capable of producing high sound pressure levels. Continued exposure to high sound pressure levels can cause permanent hearing impairment or loss. User caution is advised and ear protection is recommended when using at high levels.

WARNING: Do not expose this unit to rain or moisture.

WARNING: Only properly trained and qualified technicians should attempt to service this unit. There are no user serviceable parts inside.

WARNING: When performing service checks with the power off, discharge the main power supplies fully before taking any measurements or touching any electrical components. A 300-ohm 10-W resistor is recommended for this. Hold the resistor with pliers, as the resistor may become extremely hot.

CAUTION: Under load, with a sine wave signal at full power into both channels, the amplifier may draw in excess of 30 amperes from the $A C$ service mains.

CAUTION: When performing tests, do not connect any load to the amplifier until instructed to do so. There is no danger to the amplifier in operating without any load (open outputs).

WARNING: Do not change the position of the mode switches when the amplifier is turned on. If the position of these switches is changed while the amplifier is powered, transients may damage your speakers.

WARNING: Heatsinks are not at ground potential. Simultaneously touching either heatsink and ground, or both heatsinks will cause electrical shock.

CAUTION: Eye protection should be worn at all times when protective covers are removed and the amplifier is plugged in.

CAUTION: When performing tests that require a load, the load must be resistive and must be capable of handling 1000 W (per channel).

CAUTION: Disconnect the power cord before installing or removing any cover or panel.

CAUTION: Electrostatic discharge will destroy certain components in the amplifier. Techicians must have approved ESD protection. Proper grounding straps and test equipment are required.

[^0]
Circuit Theory, Pulse Series

Introduction

This section is intended to assist maintenance and service of the Pulse family of amplifiers. Component references detailed are for channel 1 . Operation of channel 2,3 , and 4 is identical except where explicitly noted.

Switch mode power supply

Mains power is brought in through a small, filtered IEC inlet; the purpose of this filter is to attenuate any high frequency noise produced by the SMPS, conducting back down the mains inlet.

The chassis fuse protects the system in the event of failure or severe abuse by the user.
A second, large, common mode inductor and two small Y capacitors, provide attenuation of relatively low frequency ($100 \mathrm{kHz}-$ 1 MHz) noise, conducting back down the mains.

An inrush limiting power resistor (R16), is used to prevent mains current inrush. The resistor is protected by a PTC thermistor (TH1) and once the SMPS is running, a relay (RLY1) closes over, shorting out the resistor and PTC and allowing normal operation. The bridge rectifier (BR2) is used with a bank of $61800 \mathrm{uF} / 200 \mathrm{~V}$ capacitors (C28, C29, C33, C34, C42 \& C43), to produce 320 V DC.

The SMPS control electronics is powered by the output of the SMPS; therefore in order to start the SMPS, a boot supply is used. The boot supply comprises of R30 and R102 (10K/2W), C76 (1000uF/63) and ZD5 (47V). C76 is charged up to 47V via R102 and R30 from the 320 V rail, this then powers the control electronics until SMPS operation has started and can keep itself running. It takes approximately 4 seconds to charge C67 and the SMPS cannot be switched on until this capacitor has been fully charged. The purpose of the SMPS control electronics is to provide 85 kHz switching waveforms to a pair of power IGBTS (TR24 and TR32) the micro-controller turns on the control electronics through an opto-coupler (OPT1).

When told to start by the microprocessor, all secondary supplies of the SMPS are off, and both soft start relays are open. Immediately after being told to start, the IGBT's are producing a power square wave, which is applied to the power transformer, initially through two 50R/5W resistors (R28, R142). The function of these resistors is to limit the start up current through the IGBT's. Approximately 50 mS after start up, the secondary rails are present and the SMPS is powering its own control electronics, at this point the input soft start relay RLY1 will close. Approximately 100mS after RLY1 closes the relay (RLY2), across R28, and R142 will close and at this point the SMPS is fully up and running.

All secondary voltages are produced by rectification of the square wave from the IGBT's.
The power amplifier consists of a fairly conventional Class A driver stage driving a Class AB bipolar output stage. Each stage will be dealt with individually.

Input Stage

Class A Driver

The input signal returned from the level control is fed via DC blocking capacitor C143 and R221. DC bias current for the Class A input stage is supplied via R222, while 4 n 7 capacitor C116 prevents any extreme high frequency input signals from reaching the power amplifier and also provides a low source impedance at high frequencies to ensure frequency stability.

The first stage of the class A driver consists of TR76 and TR77 configured as a long tailed pair differential amplifier. Emitter resistors R238 and R239 de-sensitize the performance of the input stage to parametric variations of the two input transistors. The quiescent current for the input stage is delivered by current source TR65. Diodes D51 and D52 provide a reference voltage of approximately 1.2 V , which is applied to the base of TR65. Approximately half of this (0.6 V) will then appear across R187 (220R), which then sets the current, sourced from TR65 collector at approximately 2.7 mA . In the quiescent state half of this current is driven through TR76 and TR77. Hence the voltage dropped across emitter resistors R238 and R239 will be approximately equal at 75 mV .

Overall voltage feedback of the amplifier is derived through R243 and R241. R242 and C20 provide local feedback around the Class A section only to define the dominant pole of the amplifier. C126 connected in series with R241 gives 100\% DC feedback to minimize any DC offset at the output. The resultant feedback signal is applied to the base of TR77.

The collector currents of TR76 and TR77 are fed via D76 and D75 to R260 and R272 respectively. Hence, in the quiescent state, R260 and R272 should each exhibit a voltage drop of 1.35 V or so.

Under normal conditions the signals at the bases of TR76 and TR77 will be identical. However, under fault conditions, such as a DC offset at the output, the base voltages will become offset also. For example, in the event of a large DC offset of +50 V at the output, a positive DC voltage will appear at the feedback point and hence at the base of TR77. Although this would, in theory, be the full +50 V , owing to C 126 being rated
at only 16 V , the voltage will, in practice, be somewhat lower. However, the important issue is that the voltage is positive. In the event the voltage is negative this indicates that the feedback network is faulty (most likely R243 itself). The voltage at TR77 base being positive whilst the base of TR76 is close to 0 V will then reverse bias TR77 base-emitter hence turning off the transistor. Hence, no voltage should appear across R239 and R272 while double the normal voltage will appear across R238 and R260 (150 mV and 1.3 V respectively). Should this not be the case, it indicates a fault in the input stage itself.

The output of the input long-tailed-pair (i.e. the voltages at the anodes of D76 and D75) are fed to a second long-tailed-pair TR80 and TR81. The bias current for this stage, is set by resistor R261 thus; D76 drops approximately the same voltage as the base-emitter junction of TR80. The same can be said of D75, and the base-emitter junction of TR80. This sets a current of about 5.75 mA , split between TR80 and TR81. C137 and C138 provide a little Miller Feedback around TR80 and TR81 respectively. These capacitors can be important to the stability of the amplifier but do not define the dominant pole. It should also be noted that either of these capacitors becoming "leaky" (difficult to measure in circuit) will result in a DC offset at the output. The collector of TR81 drives the output stage in conjunction with the collector of TR67 while the collector of TR80 drives current mirror TR66/TR67 via R212. In the quiescent state R212 will show a voltage drop of around 52 V , and the current mirror emitter resistors R188 R189 and will show equal voltage drops of 145 mV . Hence, for the same +50 V DC offset, described earlier, one would expect no voltage drop across any of R212, R188 or R189, indicating that the feedback is attempting to correct the fault. Likewise, for a negative DC offset one would expect these voltages to be twice their usual value. If this is not the case then the second stage (TR80-TR67) is at fault. The collectors of TR81 and TR67 are joined to form the output of the class A driver by the Vbe multiplier - R128, R127 and TR71 (mounted on the heatsink) bypassed at AC by C124which sets the output stage bias. The bias voltage across the Vbe multiplier should range between 2.4 V (heatsink warm) and 2.5 V (heatsink cold). Bias voltages outside this range indicate a fault with the Vbe multiplier and/or a fault in the second longtailed pair (TR80-TR81, R261, R212, R188, R189). For example, too small a bias voltage could be caused by: R261 being high, R189 being high, R127 being low, TR71 being faulty etc. Too high a bias voltage is rare, and would, most likely, be caused by a faulty transistor or resistor in the Vbe multiplier circuit.

C132 is very important for ensuring HF Stability. A faulty capacitor in this position will usually cause excess distortion and in the case of anything less than 100pF can reveal a very spiky instability.

Output Stage

The output stage consists of a symmetrical Siklai follower - TR89-TR59, R189, R29A, R35A, R56A and C21A - generating the high current drive required for the parallel connected symmetrical follower output stage TR57, TR73, TR79, and TR93, R231, R244, R248, R257. V-I limiting is controlled by TR90, TR68B, R36A-R43A, C1A, C2A, R212, R25A-R27A, R30A, R33A, R55A, D7A-D9A, D11A, ZD76-ZD6A. As the output stage is symmetrical, the positive half only will be described (Q13A-Q16A, R44AR47A, C2A, TR68A, R36A-R39A, R25A, R26A, R30A, R55A, D8A, D11A, ZD76, ZD5A).

Output stage protection is accomplished by a three-slope V-I limiting circuit which has limiting characteristics chosen to emulate the Safe operating area of the output stage transistors at their maximum operating temperature.

The V-I limiting works by controlling TR68A: when the base-emitter voltage of TR68A exceeds about 0.65V then TR68A turns on and steals current, via D8A, from the input of the output stage and thereby limiting the output. So, V-I limiting is controlled by controlling the base-emitter voltage of TR68A.

Each output device has its own current sharing resistor - R44A-R47A - the voltage across which is proportional to the current flowing in the output device. These voltages are sampled and summed by R36A-R39A. C2A ensures stability when V-I limiting is activated.

The voltage across the output devices is sampled by R25A and R26A (R30A and ZD5A limit the voltage range to reduce offload distortion) and this, summed with the output current derived signals from R36A-R39A, controls TR68A for output voltages
less than about 3 Vpk . Thus the amplifier is protected for short circuits because the base-emitter voltage of TR68A increases when output current increases and when voltage across the output devices increases.

For output voltages exceeding about 3Vpk, ZD76 conducts connecting R55A to sense the output voltage. In this case, as output voltage increases, the base-emitter voltage of TR68A reduces, thus the current limit is increased as the output voltage increases, defining the third slope of the limiting characteristic.

"Peak" LED circuit

The "peak" LED (LED1A) is driven in series with the Limiter LED (LED2A) from the output of the amplifier via D13A with it's threshold controlled by ZD7A and R58A. With no signal present, ZD7A and R58A generate a reference voltage at the anode of ZD7A, which is 18 V below the +HT supply rail. All the current flowing through R58A comes from ZD7A. To turn the LED's on, the amplifier is required to produce an output voltage approximately 5 V above the reference, at which point ZD7A is no longer in breakdown and the current flowing through R58A comes from the output stage via D13A, LED1A and LED2A. Thus the "peak" LED threshold and the "Clip Limiter" threshold vary with the +HT voltage and thus the output loading conditions.

Protection System

The protection system is based around IC1, a TL074 quad op-amp. The temperature of the heatsink is monitored by TH1, an LM35DZ temperature sensor integrated circuit producing $10 \mathrm{mV} /$ o C . The temperature signal is then multiplied by 10 by one op-amp (pins $8,9,10$) \& R16,R17. The output (pin 8) is fed directly to pins $6 \& 13$ serving as a temperature dependent ($0.1 \mathrm{~V} /$ ${ }^{\circ} \mathrm{C}$) reference for two comparator circuits - one (pins 5, 6,7) controls the relays and the other (pins $12,13,14$) controls the fan speed.

The Fan can run at two speeds, the changeover happening at about $55^{\circ} \mathrm{C}$. R 9 and ZD 2 produce a reference voltage of 9.1 V at the cathode of ZD2. This is divided by R18 \& R19 to give about 5.5 V at pin 12, the non-inverting input, which is compared with the temperature signal at pin13, the inverting input.

1. Temperature signal is less than 5.5 V : the output of the op-amp will be high (+24V), turning Q 1 off and therefore Q 2 off. The fan speed is controlled by R21 which forces approximately half speed.
2. Temperature signal is more than 5.5 V : the output of the op-amp will be low (-5.6 V), turning Q 1 on and therefore Q 2 on. R21 is now effectively shorted out by Q2 and the fan runs at full speed.

At turn-on C16 will charge through R9 and R10 towards the 9.1 V reference (ZD2). The voltage is fed to the non-inverting input (pin 5) of op-amp at pins 5, 6, 7 configured as a comparator with hysterisis (D9 and R11). The reference for the comparator is set by the temperature reference which is about 2.5 V at room temperature ($25^{\circ} \mathrm{C}$), When the voltage across C 16 exceeds the temperature reference, the op-amp output will swing high (+24 V) and turn Q3 on via current limiting resistor R13. When Q3 is on, it pulls current through the coils of RLY1 (soft-start) and RLY1A, RLY1B on the output board. This also means that the collector of Q3 will swing low (close to OV) effectively shorting out R15 and LED2 to turn LED2 (Protect, Yellow) off.

Output Connections

The output of the amplifier is connected to Zobel Network R12A/C8A. This network presents a defined load impedance to the output stage at high frequencies to ensure stability. Either of R12A or C8A being faulty will result in the amplifier oscillating at high frequency, which may also be evidenced by mains "hum" and/or distortion at the output. This signal is fed via output choke L1A which isolates any load capacitance from the amplifier feedback to ensure stability. The output is then fed through output relay RLY1A and on to the rear panel output connectors.

Observe all Cautions and Warnings when servicing this amplifier.

1 Dissassembly for Service

1.1 Main Module Removal

1. Remove the top cover by removing the two side, two back, and four top screws. Lift up slightly on the rear of the cover, and then pull it toward the back of the amplifier.
2. Remove the eight screws that hold the input connectors to the chassis.
3. Remove the four screws that hold the output jacks to the back panel.
4. Remove the four screws that hold the circuit board down to the chassis.
5. Remove nut from green and yellow striped ground wire connected to back panel.
6. Remove the two screws that hold the IEC filter to the back panel.

Remove all eight screws from underneath the chassis. Grip the front silver handle and gently pull forwards about $1 / 2$ inch (be careful; it is a tight fit), and then lift up and away from the chassis.

After removing the PCB from the chassis, discharge the power supply capacitors. For C75 use a 1k/5W resistor. For the bulk reservoir capacitors, use a $10 \mathrm{k} / 5 \mathrm{~W}$ resistor.

2 Troubleshooting

2.1 Non-Powered Checks

1. Perform a cursory check of all major items in the power supply i.e. IGBT's.
2. Locate the flyback diodes D114, D115, D214, and D215 on the main modules and check for indications of a short. If a short is indicated, this means that an output device or driver transistor in parallel with that diode is shorted, usually not the diode itself. If an output device is found to be defective, emitter resistors should also be checked. If no output device is found defective, perform a quick check of driver, pre-driver, and bias transistors.
3. Check driver and pre-driver transistors for shorts or opens. If a fault is found, do an in-circuit static check of all semiconductors on the main board. If no output device and nothing upstream is found defective, move to power-on checks.

Otherwise continue.
4. If a failure has occurred anywhere in the output stages, check the bias servo transistor. Any failure associated with bias transistors may result in repeat failure of the affected channel even if all other defective components have been found and replaced.
5. If a failure is found in any LVAs, checks should continue up to the voltage translator stage.

2.2 Powered Checks

WARNING: Use extreme caution when making internal adjustments when the unit is powered.

1. Apply AC mains. The PIC microprocessor will perfom a self-test, during which time the Fault LED and both Temp LEDs will flash. After the self-test, the AC-present LED will remain on.
2. Switch on the amplifier using the front panel switch. If the protect light is on and not flashing, this indicates a DC offset fault on one of the channels. Remove AC mains. Disconnect the output board from the main board at the header strip on the rear. Apply AC mains, switch the unit on, and measure for a DC offset at the output connector for each channel (WRT amplifier ground).
3. If the protect light is flashing, check the chassis fuse on the rear of the unit. If this is OK, you will make a few simple measurements with a DVM set to Ohms range:
4. Remove AC mains.
5. Discharge the power supply capacitors. For C75 use a $1 \mathrm{k} / 5 \mathrm{~W}$ resistor. For the bulk reservoir capacitors, use a 10k/5W resistor.
6. Check the soft-start resistors, located between the transformer and the left heat sink. These two ceramic resistors will be broken if the power supply is OK and there is a fault in one of the channels.
7. Measure the resistance between the following points. There should not be any short circuits or low-resistance readings.

- Case of the output devices to the heat sink.
- Case of the output devices to the output connector tag.
- Across the outer legs of the driver transistors (BF422, BF423) on each channel.

If you have a short or low resistance at any of these points, you have located the faulty channel. If these tests do not reveal the fault, then the fault is most likely in the power supply. The following procedure should help to locate it.

1. Be sure $A C$ mains is removed.
2. Separate the power supply unit and amplifier stages by breaking the links (shown in green on Diagram 1). These are down the front part of the PCB (underside) by the capacitors nearest the connections for the four black wires, shown in blue in Diagram 1.

Diagram 1. View from solder side of $P C B$.
3. Use a 60V DC bench supply (current limited). Connect it across $C 75$ with +60 V to point B and Gnd to point A (see Diagram 2). Fit a switch (switched off) across pins 4 and 5 of OPTO1 (be very careful, as a spark here will kill it).

Diagram
4. With your scope Gnd referenced to point D or A, switch on the DC supply. Wait a second and then switch the opto. The current should go up to about 110 mA . If it goes rather high you have a fault.
5. Using the oscilloscope, check pins 11 and 14 of the SG3525. This should give a square wave output similar to that shown below:

6. Move the probe to monitor the waveform at the IGBT's marked E on Diagram 2. You should see a switching waveform similar to that shown below.

7. Some examples of incorrect waveforms are shown below, along with the likely area of failure.

The waveform below is commonly caused by faulty ZTX650-ZTX750 transistors in the power supply.

The waveform below is commonly caused by a faulty PWM transformer TX4.

The waveform below is typical of an overdrive fault (2×1100 version only). This may be caused by a faulty IRF540 or in the BC546-BC556-BF422 transistors in the FET drive section. Or it may be a result of breakdown in the BF422 transistors in the driver stage (refer to Tech Note \#165.)

8. All being well, connect another jumper wire from the +60 V rail to the PCB point marked C on Diagram 2. Check the waveform from the output of the IGBT. To do this, monitor the middle pin of the IGBT marked F on Diagram 2. You should have a waveform similar to that shown below.

9. Move the oscilloscope's Gnd reference to the normal ground point of the amplifier; i.e., the four black wires (shown blue in Diagram 1). When you turn on the DC power supply, the current should have risen to about 150 mA . You should see square-
wave outputs from the transformer at the points shown in green on Diagram 3.

Diagram 3. View from solder side of $P C B$.
10. The waveforms should be similar to those shown below.

For \pm MT:

For $\pm \mathrm{HT}$:

For $\pm 15 \mathrm{~V}$ (Note: the gain on the V/Div has been increased to give a better view):

You have now determined that the power supply is running and that there are DC supplies being generated. You should now check the power supply using a mains supply input.

1. Remove all the connections used for the DC bench supply test. Be sure to remove the switch on the opto isolator -- if it's left in position and switched on, the power supply will not power up.
2. At this stage you WILL NEED a MAINS isolation transformer. Note: This is not the same as
3. Plug the mains isolation transformer into the mains AC supply.
4. From the output of this transformer, connect the AC power cord to the amplifier.

A
WARNING: Using a Variac or noise isolation transformer instead of a MAINS isolation transformer could lead to injury or death.
5. The unit should go through its normal start-up procedure. Once it has stopped flashing, move the Operate switch to the ON position. The amplifier's power supply should start up after approximately 2 seconds.
6. If the protection light flashes, disconnect the AC power cord and check the chassis fuse and replace if necessary.
7. Also check the soft-start resistors (the flat thick-film 20-ohm resistors alongside the main transformer). If the resistors are open circuit, use a temporary resistor during this phase, as changing the soft-start resistors is difficult and the resistors are fragile. See Diagram 4 for details of the temporary resistor.

Diagram 4. Temporary resistor.
8. Replace the power cord and try the power supply again. It should start. You can measure the DC supply rails at the link points.
9. Switch off the unit and bridge the isolating links between the PSU and amplifier stages with solder. Switch on the unit.
10. If the unit goes into protect mode, there is another fault in one or more channels. If the unit powers up correctly, inject a 1 kHz 1.5 dBu signal into Channel 1. Monitor the output (off load) for a clean sine wave.
11. Then use the second channel of the oscilloscope to monitor the case of the MJ15024 device. As you increase the output from the amplifier, you should see a waveform similar to that shown below.

12. Move the second channel monitor to the case of the MJ15025 devices. Check that the waveform is similar to that shown below.

Now put the amplifier boards back into the chassis. Fit the minimum of screws to ensure good earthing. If there are any further problems, it is very frustrating to have to undo all the fixing screws again.

The screw fixings we suggest are

- The two chassis earth points.
- One of each heat sink to chassis screw.
- One silver PCB to chassis screw.
- Two output panel screws.

This will allow you to run the amplifier and perform the quick test. You will use a large input signal and overdrive each channel for a while, then short the output and again overdrive each channel for a while.

1. Load the output to 4 ohms.
2. Turn the level control to maximum.
3. Inject a $+5 \mathrm{dBu}, 100 \mathrm{~Hz}$ sine wave signal into each channel's input and check for heavily clipped output. Run for 30 seconds.
4. After 30 seconds, short circuit the output for a further 30 seconds.
5. Remove the short circuit and reduce the signal to +1.5 dBu (+1 dBu for the 4×300). You should see a clean, unclipped output at the correct level shown below.

- 4x300 300W
- 2x650 650W
- 2x1100 1100W

3 Checkout/Adjustment Procedures

The following instructions outline an orderly checkout and troubleshooting procedure. The purpose and arrangement of this procedure is to ensure proper operation after a repair has been completed. Before beginning these power-on tests, perform
the checks listed in Section 2. These checks will minimize the possibility of receiving a nasty surprise when turning on the amplifier.

3.1 Initial Conditions

The start of each step assumes all switches are pre-set to the following positions:

- Mode Switch: Normal position.
- Level Controls: Both up (clockwise) fully.

3.2 Test Procedure

CAUTION: If you are attempting to check or measure VI limiting, output power, or any other test which would require the amplifier to produce large amounts of heat, the main module should be securely mounted inside the chassis. If the module must be removed from the chassis, the test should be of very short duration.

WARNING: Do not connect any load to the Pulse power amplifier during these tests until specifically instructed to do so.

3.2.1 Turn-on Delay No Signal

No Load
Apply mains and check for the following:
Mains LED is on and red. Protect LED (red) and both temp. LEDS (yellow) flash together 5 times and then go off.
Switch on and observe the following:
After 2 seconds the operate LED is on and yellow. Fans are on at full speed. After another 2 seconds clip LEDS flash and fans slow to idle.

3.2.2 DC Output Offset No Signal

No Load

With the input level controls turned fully clockwise, the DC offset for both channels should be less than ± 100 millivolts. A large DC offset usually indicates a failure in the output stage, though such an offset should have shut down the amplifier on a DC/LFI signal.

3.2.3 Quiescent Power No Signal

No Load

While there is no published specification on quiescent power, it should be checked. A power draw with the fan operating slowly will normally be less than $120 \mathrm{~W}(<800 \mathrm{~mA})$. If quiescent power greatly exceeds expectation, then turn the amplifier off immediately and search for power supply or output failure. If quiescent draw exceeds expectation by a "small" amount, check bias immediately.

3.2.4 Sensitivity (Gain) 1-kHz Sine Wave

No Load

Check that both level controls are full clockwise. Insert a $0.1 \mathrm{~V} 1-\mathrm{kHz}$ sine wave and measure $14.9 \mathrm{~V}-16.5 \mathrm{~V}$ at the output of each channel for the $2 \times 1100,11.7 \mathrm{~V}-13 \mathrm{~V}$ at the output of each channel for the $2 \times 650,8 \mathrm{~V}-8.8 \mathrm{~V}$ at the output of each channel for the 4×300.

3.2.5 Bridge Mono 1-kHz Sine Wave

No Load
Note: Always turn power to the amplifier off prior to changing the position of the Mode Switch. With the dual/mono switch in the bridge mono position, insert a $0.45 \mathrm{Vrms} 1-\mathrm{kHz}$ signal into channel one input. There should be signal present on both channel outputs, equal in amplitude, with channel two 180 degrees out of polarity from channel one (see Fig. 2.3). Channel one input level control should control the output level for both channels. Return the amplifier to stereo operation.

3.2.6 10-kHz Square Wave 10-kHz Sq. Wave

Slew Rate Test 8-ohm Load
With an 8 -ohm load on each channel, insert a $10-\mathrm{kHz}$ square wave and adjust amplitude to produce an output 10 V below clipping. Observe a $50 \mathrm{~V} / \mu \mathrm{S}$ (or higher) slew rate. The output waveform should be stable with no ringing or over-shoot.

WARNING: Many of the following checks are done by connecting a resistive load to the output of the amplifier. Use caution and follow check-out procedures carefully to ensure correct results. These tests require a resistive load capable of over 2000 W continuous into as low as $\mathbf{2}$ ohms.
WARNING: The Pulse-Series is capable of drawing 10 Amperes of current from 230VAC mains when loaded to 2 ohms per channel and with both channels driven by a 1 kHz sine wave.

Note: For the remaining tests, the main module should be placed back into the chassis if at all possible. Otherwise, the heatsinks will become very warm, causing the amplifier to thermally protect itself. It is also possible under high-power bench testing to blow the fuse.

3.2.7 1-kHz Power + THD 1-kHz Sine Wave

Various Loads

Note: Operation with a sine wave into a low-impedance load will cause the fuse to blow after 5 to 10 seconds.
AC Mains of 230 VAC, $50-\mathrm{Hz}$

- 8-Ohm Load: Minimum voltage is 56.6 Vrms (400 W) with $<0.1 \%$ THD for the $2 \times 650,74.8 \mathrm{Vrms}$ (700 W) with $<0.1 \%$ THD for the 2×1100, and 36.9 Vrms (170W) with $<0.1 \%$ THD for the 4×300.
- 4-Ohm Load: Minimum voltage is 51.0 Vrms (650W) with $<0.1 \%$ THD for the $2 \times 650,66.3 \mathrm{Vrms}(1100 \mathrm{~W})$ with $<0.1 \%$ THD for the 2×1100, and 34.6 Vrms (300W) with $<0.1 \%$ THD for the 4×300.
- 2-Ohm Load: Minimum voltage is 41.2 Vrms (850 W) with $<1.0 \%$ THD for the $2 \times 650,54.8 \mathrm{Vrms}(1500 \mathrm{~W})$ with $<1.0 \%$ THD for the 2×1100, and 25.7 Vrms (330W) with $<1.0 \%$ THD for the 4×300.

3.2.8 Noise No Signal

No Load
Make sure the level controls are fully clockwise. Terminate the input with a 600-ohm load. Using a 20 to $20,000-\mathrm{Hz}$ bandpass filter, measure the noise on the output of the channel under test. Noise is measured relative to power output at 8 ohms: 56.6 Vrms (400W) for the 2×650, 74.8 Vrms (700 W) for the 2×1100, and 36.9 Vrms (170 W) for the 4×300 and should be at least $100-\mathrm{dB}$ down from these numbers.

3.3 Post Testing Procedure

At the completion of testing, set all switches per customer request. If none are specified by the customer, the following are standard factory settings for original shipment:

- Mode Switch: Normal position.
- Level Controls: Both down (counter-clockwise) fully.
- Front panel switch: OFF position.

4 P.A.T. Check

There is also a requirement to perform a P.A.T (Portable Appliance Test) check on the product prior to return to customer. This must be carried out by a P.A.T. certified engineer.

The following are the settings required:

- Earth Bond 25A @ 6VRMS Pass <= 0.1Ω Typical 0.08Ω
- Insulation 500V DC Pass > 9.9M
- Flash Test N/A (Unit will fail this test due to filtered IEC which will indicate a breakdown)
- Load Test Unit will power up for 8 seconds
- Operation Test Pass < 3KVA
- Leakage Test Pass < 3 mA

IH A Harman International Company
© 2002-2005 Crown Audio®, Inc.

Pulse 2x650 Parts List

Part Number	Description	Qty	Designator(s)
AE0047	MF 1W RES 5\% 4R7 PRO1	4	R85, R117, R77, R115
AE0100	MF 1W RES 5\% 10R PRO1	5	R288, R1, R4, R3, R5
AE10002	RES 47K0 5\% 1W MF PRO1 XA01-	4	R86, R121, R39, R40
AE10010	RES 3R3 5\% 1W MF PRO1 XA01-	1	R21
AE10012	RES 10K 5\% 1W MF PRO1 XA01-	1	R289
AE10015	MF 2W RES 5\% 10R PRO2 AE100	1	
AE10018	MF RES 2W 5\% 33R PRO2 AE100	1	R22
AE10022	RES 3K3 5\% 1W MF PRO1 XA01-	2	R54, R153
AE10027	100R 2W MF RESISTOR PRO2	1	R19
AE2100	MF 2W RES 5\% 10R PRO2	1	R14
AG10007	RES W/W 0R47 3W CA-RE	16	R116, R100, R101, R168, R131, R122, R170, R173, R92, R107, R185, R186, R74, R84, R187, R188
AJ10002	RES 50R 5W THICK FILM XA01-	2	R142, R28
AJ10003	RES 10K 5\% 5W VERT XA01-	2	R30, R102
AM10001	RES 47R 5\% 17W XA02-	1	R16
AP1301	MF 0.25W RES 1\% 10R BL	1	R25
AP1309	MF 0.25W RES 1\% 22R BL	6	$\begin{aligned} & \text { R80, R126, R64, R138, R141, } \\ & \text { R67 } \end{aligned}$
AP1319	MF 0.25W RES 1\% 56R BL	14	$\begin{aligned} & \text { R89, R175, R136, R137, R135, } \\ & \text { R52, R53, R119, R166, R69, } \\ & \text { R68, R70, R154, R155 } \end{aligned}$
AP1325	MF 0.25W RES 1\% 100R BL	7	$\begin{aligned} & \text { R132, R125, R73, R81, R181, } \\ & \text { R185, R169 } \end{aligned}$
AP1333	MF 0.25W RES 1\% 220R BL	8	R51, R109, R110, R156, R98, R97, R45, R34
AP1337	AF 0.25W RES 1\% 330R BL	3	R82, R124, R37
AP1341	MF 0.25W RES 1\% 470R BL	8	R134, R144, R57, R148, R71, R63, R150, R59
AP1347	MF 0.25W RES 1\% 820R BL	18	R176, R104, R103, R177, R179, R128, R127, R183, R184, R167, R105, R106, R189, R190, R78, R79, R192, R191
AP1349	AP 0.25W RES 1\% 1K BL	18	R49, R270, R88, R111, R112, R113, R83, R174, R271, R120 R96, R95, R94, R123, R24, R208, R26, R29
AP1361	MF 0.25W RES 1\% 3K3 BL	2	R11, R290
AP1365	MF 0.25W RES 1\% 4K7 BL	1	R172

AP1366	MF 0.25W RES 1\% 5K1 BL	7	R65, R146, R140, R61, R8, R47, R32
AP1370	MF 0.25W RES 1\% 7K5 BL	1	R180
AP1373	MF 0.25W RES 1\% 10K BL	17	R90, R108, R114, R118, R99, R93, R287, R286, R42, R44, R23, R27, R178, R161, R182, R164, R15
AP1377	MF 0.25W RES 1\% 15K BL	1	R160
AP1380	MF 0.25W RES 1\% 20K BL	16	R50, R72, R76, R145, R55, R157, R133, R129, R152, R62, R9, R10, R41, R43, R36, R87
AP1387	MF 0.25W RES 1\% 39K BL	2	R17, R18
AP1389	MF 0.25W RES 1\% 47K BL	15	R291, R75, R66, R147, R143, R130, R139, R60, R46, R33, R35, R31, R38, R158, R91
AP1397	MF 0.25W RES 1\% 100K BL	2	R3, R4
AP1405	MF 0.25W RES 1\% 220K BL	6	$\begin{aligned} & \text { R163, R171, R159, R162, R7, } \\ & \text { R48 } \end{aligned}$
AP1421	MF 0.25W RES 1\% 1M BL	8	$\begin{aligned} & \text { R56, R149, R151, R58, R1, } \\ & \text { R5, R2, R6 } \end{aligned}$
AS0102R-0805F	SM0805 RES 1K 1\% 0.1W T200	2	R15, R16
AS0103R-0805F	SM0805 RES 10K 1\% 0.1W T200	3	R58, R61, R62
AS0104R-0805F	SM0805 RES 100K 1\% 0.1W T200	3	R60, R38, R35
AS0113R-0805F	SM0805 RES 11K 1\% 0.1W T200	4	R4, R11, R3, R10
AS0152R-0805F	SM0805 RES 1K5 1\% 0.1W T200	4	R34, R37, R56, R49
AS0432R-0805F	SM0805 RES 4K3 1\% 0.1W T200	7	R5, R12, R6, R13, R30, R17, R29
AS0470R-0805F	SM0805 RES 47R 1\% 0.1W T200	4	R7, R14, R33, R36
AS0471R-0805F	SM0805 RES 470R 1\% 0.1W T200	7	R45, R46, R54, R57, R53, R51, R55
AS0512R-0805F	SM0805 RES 5K1 1\% 0.1W T200	8	R1, R2, R52, R59, R8, R9, R63, R64
BA0001	DIODE 1N4148	29	D7, D8, D30, D31, D19, D22, D10, D42, D43, D29, D12, D37, D38, D14, D15, D24, D27, D6, D35, D5, D36, D16, D33, D9, D4, D2, D3, D47, D21
BA0025	DIODE FAST 400V 1.7A BYD73G	9	$\begin{aligned} & \text { D23, D41, D39, D40, D44, } \\ & \text { D68, D67, D64, D63 } \end{aligned}$
BA10004	DIODE IN4004 CA-DB	4	D11, D32, D13, D34
BB0116	ZENER DIODE 1.3W 47V	1	ZD5
BB10001	ZENER DIODE 20V 400MW XD03-	1	ZD12
BB10002	ZENER DIODE 500MW 2V7 CA-DB	5	ZD2, ZD7, ZD9, ZD4, ZD6
BB10005	ZENER DIODE 500MV 15V CA-DB	1	ZD13
BB10007	ZENER DIODE 500MW 4.7V5\% CA-DB	2	ZD22, ZD23
BB10011	ZENER DIODE 500MW 47V CA-DB	4	ZD3, ZD10, ZD1, ZD8

BB10022	ZENER DIODE 500MW 24VOLT 1	2	ZD11, ZD14
BC0217	DIODE BRIDGE 1.5A 400V W04	1	BR1
BC10003	RECTIFIER MUR1640CT XD04-	4	D46, D60, D45, D50
BC10004	BRIDGE REC 35A 600V	1	BR2
BD0364	BF422 NPN TRANS	8	TR8, TR35, TR36, TR9, TR52, TR21, TR22, TR47
BD0365	BF423 PNP TRANS	10	TR16, TR17, TR18, TR19, TR45, TR42, TR41, TR39, TR40, TR12
BD0373	MJ15024 NPN POWER TRANS TO3 @	8	TR27, TR11, TR56, TR57, TR37, TR51, TR60, TR61
BD0374	MJ15025 PNP POWER TRANS TO3 @	8	TR48, TR34, TR58, TR59, TR14, TR29, TR62, TR63
BD0394R	TRANSISTOR BC546BT NPN TAPED	8	TR20, TR38, TR67, TR1, TR5, TR7, TR55, TR23
BD0395R	TRANSISTOR BC556BT PNP TAPED	5	TR44, TR13, TR6, TR4, TR53
BD0396	OPTO TRANSISTOR CNW11-AV1	1	OPT1
BD10011	2 2A872 TRANSISTOR TO220 CA-TF	4	TR30, TR31, TR26, TR28
BD10014	MJE5731A TRANSISTOR CA-TF	4	TR25, TR33, TR46, TR10
BD10020	TIP50 CA-TF	3	TR43, TR15, TR2
BD10026	TRANS TIP122 TO220 XE01-	1	TR50
BD10032	IGBT SGL50N60RUFD-TO264 XF07-	2	TR24, TR32
BD10042	ZTX651 NPN TRANSISTOR	2	TR49, TR64
BD10043	ZTX751 PNP TRANSISTOR	4	TR3, TR54, TR66, TR65
BE0403	TL074CN QUAD OP AMP	1	IC2
BE0417	V.REG $7915-15 \mathrm{~V}$ 1A	1	IC8
BE0428	NE5532P/NJM5532D DUAL OP AMP @	2	IC5, IC4
BE0503	TL431 SHUNT REGULATOR	1	D1
BE10012	LM35-DZ (SRX) IC CA-TF	2	IC9, IC10
BE10030	V.REG 7815 +15V 1A	1	IC7
BK10008	IC MICROC PIC16C57-04P XG04-	1	IC1
BS0005R-SOT23	BAV99 SM DIODE	6	D1, D2, D5, D6, D7, D8
BS0506R-SOT23	NPN TRANS BC846B	1	TR2
BS10043	ANALOG SW.DG411 QUAD SM	1	IC2
BS7001R-SO8	TL072CD SM DUAL OP AMP \#	1	IC8
BS7009R-SO8	NE5532 SM DUAL OP AMP \#	2	IC1, IC3
BZ10000	(A) PWM CONT SG3525AN XF04-	1	IC6
BZ10002	!THERMISTOR MAIN VOLTAGE CA-DB	1	TH1
CA0026	M/LAYER CAP .1UF 63V	17	C31, C32, C153, C154, C36, C82, C19, C93, C155, C157 C92, C156, C94, C109, C158,

CA0027	M/LAYER CRMC CAP 10N 100V	4	C2, C3, C4, C5
CA0030	M/LAYER CRMC CAP 50V 4N7	2	C24, C26
CA0038R	C/CAP 0.2"TAPED 100V 15PF	2	C23, C25
CA0041R	C/CAP 0.2"TAPED 100V 47PF	2	C58, C55
CA0044R	C/CAP 0.2"TAPED 100V 100PF	2	C44, C77
CA0045R	C/CAP 0.2"TAPED 100V 150PF	2	C4, C160
CA10023	C/CAP 1000V 470PF XC03-	4	C103, C53, C65, C97
CC0238	MICRO-BOX 5MM 5\% 63V 1N	3	C87, C17, C102
CC0242	MICRO-BOX 5MM 5\% 63V 4N7	2	C47, C71
CC0244	MICRO-BOX 5MM 5\% 63V 10N	4	C56, C69, C57, C49
CC0246	MICRO-BOX 5MM 5\% 63V 22N	2	C1, C6
CC0250	MICRO-BOX 5MM 5\% 100V 100N	5	C35, C96, C72, C104, C70
CC0251	MICRO-BOX 5MM 5\% 100V 220N	8	$\begin{aligned} & \text { C39, C13, C12, C79, C80, } \\ & \text { C11, C10, C } 40 \end{aligned}$
CC0288	POLYPROPYLENE 2200PF 250VAC (C	2	C16, C20
CC10077	POLY-CAP 400V 1 U XC09-	2	C38, C62
CC10078	POLY-CAP 400V 470N XC09-	2	C60, C61
CE0403	VERT ELEC 0.2"TPD 100UF 10V SK	5	C37, C85, C64, C17, C18
CE0445	VERT ELEC 1UF 63 V SKP	3	C52, C66, C101
CE0462	VERT ELEC 10UF/63V 5X11MMSKP	18	$\begin{aligned} & \text { C86, C91, C45, C78, C84, } \\ & \text { C88, C75, C41, C18, C27, } \\ & \text { C30, C74, C120, C129, C125, } \\ & \text { C133, C13, C15 } \end{aligned}$
CE10003	ELEC/LYTIC RAD 200V 1800	8	$\begin{aligned} & \text { C28, C29, C42, C43, C33, } \\ & \text { C34, C117, C118 } \end{aligned}$
CE10004	ELEC/LYTIC RAD 40V 2200 XC06-	3	C5, C22, C159
CE10005	ELEC/LYTIC RAD 63V 1000 XC06-	1	C76
CE10009	NON-POL 10V 100UF JAMIC	9	$\begin{aligned} & \text { C148, C54, C149, C63, C6, } \\ & \text { C7, C8, C9, C21 } \end{aligned}$
CE10033	ELEC/L 63V 220UF 105 C XC06-	4	C73, C81, C128, C134
CS1221R-1206J	CAP CRMC 220PF 5\% 50V NP0	4	C25, C26, C27, C28
CS7104R-1206K	CAP CRMC 100NF 10\% 50V X7R	5	C10, C12, C23, C24, C33
CX10000	!CAP 275V 1UF X2 XC09-	1	C2
D-C300A-01	POT 16MM 10K LIN RD1610 A0X-P	2	P1, P2
DG10010	SWITCH ROUND SPST XK04-	1	
DJ10006	SWITCH SLIDE DPDT 30A NO LE	1	SW1
DZ10012	RELAY SPCO 16A 48V XK06-	2	RLY1, RLY2

FA10002	40W IDC CONN SIDE EJECT XL04-	1	
FA10003	$34 W$ IDC CONN SIDE EJECT XLO4-	1	
FF0728	28WY DIL IC SKT DUAL WIPE TIN	1	
FF10003	PC JUMPER XLO2-	8	
FF10019	BINDING POST ASSY 4MM XL05-	1	
FF10022	SPADE TAB VERT PC 0.125C	2	
FF10030	4 POLE SKT - SPEAKON CA-CO	2	CN1, CN2
FF10046	2W 0.1 ST\&F/L CONN HDR CA-CO	3	CN13, CN14, CN16
FF10055	SKT 1X12 SIDE ENTRY X	1	
FF10063	CONN. 34W BOX GOLD XL04-	1	
FF10073	HEADER 2X17 R/A XL04-	1	
FF10079	TERMINAL BLOCK - 3 WAY XL04-	2	CN8, CN9
FF10080	PLUG 3 WAY FREE KLIPPON XLO4-	2	
FF10083	5 WAY PIN HDR.LATCH TYPE XL04-	1	
FF10085	HEADER 1×12 THU VERT XL04-	1	
FG10006	PCB FASTON	11	
FH0760	REAN SLIMJACK S203-84G	2	CN2, CN3
FJ10005	!IEC FILTERED 10AMP CONN XL02-	1	CN1
FJ8019	!LEAD 10A USE FJ8016:17:18	1	
FK0986	XLR CON FML R/A CHAS PIN MTL	2	CN6, CN7
FK0987	XLR CON ML R/A CHAS PIN MTL	2	CN4, CN5
HB10042	TRANS 240V/11-0-11V 4VA	1	TX5
HB10045	TRANSFORMER PT42E XP01-	1	TX8
HC0021	FERRITE BEAD AX 5X3.5MM TAPED	2	L4, L5
HC0028	INDUCTOR 10UH TOKO R621LY-100K	2	L2, L3
H-C300A-01	TRANSFORMER FET DRIVER W	1	TX6
H-C300B-01	CHOKE COM MODE E251	1	L1
H-C300E-01	CHOKE PULSE OUTPUT	2	L1, L2
H-C650A-01	TRANSFORMER.SMPS P2X650	1	TX7
J-C300A-01	LIGHTPIPES 8+1 - PULSE WAS J	1	
J-C300B-01	LIGHTPIPE LARGE - PULSE WAS J	1	
JS0004	LED RED SML-010UT	5	LD5, LD6, LD16, LD13, LD11
JS0005	LED YEL SML-010YT	4	LD9, LD14, LD15, LD17
JS0006	LED GRN SML-010PT	2	LD1, LD2
KA0267	SIF LIVE 4/8 POT KNOB GREY	2	
KZ10000	POT COVER - PULSE XV02-	2	
LA0008	7/0.2 RED WIRE	0.16	

LA0041	16/0.2 GREEN/YELLW WIRE	0.12
LA0051	1/0.6 SINGLE STRAND WIRE PINK	0.05
L-B100A-02	EARTH WIRE MAINS TO CHASS	1
L-C300A-02	WIREFORM ASSY.FAN-80MM X 12V	2
L-C300B-03	WIRING LOOM - PULSE WAS -	1
L-C300C-02	WIRING LOOM-PULSE F\PANEL	2
L-C300E-01	INDUCTOR WIRE DETAIL	1
LF0572	H20 NEOPRENE SLEEVES	3
LF0573	H30 X 20 BLACK SLEEVE	2
LF0596	CABLE TIE 8.0 NARROW	7
M-C250A-01	250 \& 650 SOFTWARE	1
NA0084	M3X6MM PAN POZI BLK SCREW	4
NA0384	M2.5X6MM PAN POZ BLK TAPTITE	8
NA0392	SCREW PLAS NO8X3/8" BLK	2
NA0397	M3X6 FLANGE SCREW BLK POZI	10
NA0424	NO.8X5/8" PAN POZI BLK Y CUT	4
NA10002	M3.6 PAN POZI TAPTITE ZN XW02-	4
NA10015	M3X16 PAN POZI SCR BZP CA-FI	32
NA10042	M3X16 SCREW BZP HEX CA-FI	2
NA10045	M4X6 PAN POZI SCR BLK CA-FI	4
NA10047	M3X10MM P/P ZINC CA-FI	1
NA10050	M5X20 TORX TAPTITE BK XW05-	4
NA10051	M5X16 TORX TAPTITE BLK XW05-	8
NB0113	M3 NYLON INSERT NUT	1
NB0122	M3 PLAIN NUT	6
NB10005	M3.5 NUT FULL BZP CA-FI	32
NB10014	NUT HALF M4 XW13-	4
N-B966B-01	ADHESIVE STRIP 10X10 966 WAS N	11
NC0221	M3 S/PROOF WASHER	6
NC0249	M4 PLAIN STEEL WASHER ZNC CLR	32
NC0256	M3 PLAIN WASHER	3
NC10018	WASHER-PLAS 9.5X4.75X0.5 XW07-	8
NC10022	M4 SPRING WASHER STL.BZP	32
ND10004	PILLAR METAL M3X10MM XW10-	2
ND10025	SPACER F/PANEL - PULSE XW10-	4
ND10027	SPACER NYLON FAN SCREW XW10-	4
ND10040	SPACER-NYLON 6.35X3.56X6.35LG.	4

NE0408	M3 SOLDER TAG	1
NZ10000	ADHESVIE BCK MIN SUPPORT CA-EL	2
P-C1100D-01	SPRING CLIP P-C11	1
P-C300A-02	INSULATOR HEATSINK - 250 XV01-	2
P-C300B-03	INSULATOR BASE TRAY-PULSE	1
P-C300E-01	FRONT PANEL THERM.INSUL.	2
P-C300F-01	HEATSINK-CUT \& PUNCH	2
P-C300J-03	LID AMPLIFIER - PULSE	1
P-C300M-01	SPACER FAN (CUT) - PULSE	2
P-C300N-01	FAN SPACER FOAM - PULSE	2
P-C650A-01	SPACER - BINDING POST	1
P-C650Z-01	BADGE - PULSE 2X650	1
P-CR1100C-02	1100 SUB FRONT PANEL	1
P-CR300C-01	BADGE - CROWN	1
P-CR300I-02	FRONT PNL PUNCHED- CROWN	1
P-CR650B-01	650 BASETRAY	1
R-C650A-04-AF	650 PULSE MAIN PCB ASSY. R-650	1
R-C650B-02-AF	650 FRONT PANEL PCB ASSY R-650	1
R-C650B-02-SC	650 FRONT PANEL PCB -SC R-650	1
R-C650B-02-SM	650 FRONT PANEL PCB-SM R-650	1
R-CR650C-01-AF	CROWN 650 REAR PANEL PCB ASSY.	1
S-C650A-04	PCB MAIN BOARD P2X650 W	1
S-C650B-02	PCB FRONT PANEL BRD.P2X650	1
S-CR650C-01	PCB CROWN OUTPUT BRD.P2X650	1
TA10022	CARTON CUSTOM PACK (WAS	1
TZ10001	GRIP BAG A4 XT01-	1
TZ10002	GRIP BAG SMALL $4 \times 8 \mathrm{~N}$ X XT01-	1
TZ10004	POLYBAG -26X24X250 GAUGE CA-MI	1
ZA0395-01	FCC LABEL SELF ADH 70X15	1
ZA10004	STICKER - SAFETY EARTH XT03-	1
ZA10020	LABEL SHOCK \& MOISTURE XT03-	1
ZA10027	LABEL UL STD. 6500 55X25 XT03-	1
ZA10039	FOAM SEALING STRIP XT05-	1.25
ZA10081	LABEL CARTON-CROWN PULSE	1
ZC0240	REG KOOL-PAD,SELF ADH 105SP900	4
ZC10014	HEATSINK TO220 CLIP ON CA-HA	1
ZC10018	CLIP HEATSINK TO-247 XW13-	15

ZC10029	TO3 INSULATING WASHER	16	
ZC10030	TO3 PLASTIC COVER	2	
ZD0332	FUSEHOLDER 10A 250V PCB MNT	1	
ZD0334	20MM S/ENC PCB MNGT FUSEHOLDER	2	
ZD10000	FUSE 20MM T200MA XM01-	1	
ZD10002	FUSE 20MM T500MA XM01-	1	
ZD10014	IFUSE 6.3 AMP S/D SLOW T CA-EL	1	XT1
ZE10007	CER RESONATOR 3.58MHZ XI01-	1	
ZM10092-01	MANUAL CROWN P2X650 V1.0	1	4

Pulse 2x1100 Parts List

Part Number	Description	Qty	Designator(s)
AE0047	MF 1W RES 5\% 4R7 PRO1	4	R84, R117, R78, R114
AE0100	MF 1W RES 5\% 10R PRO1	5	R160, R1, R4, R3, R5
AE10002	RES 47K0 5\% 1W MF PRO1 XA01-	8	R46, R194, R75, R162, R36, R37, R86, R120
AE10010	RES 3R3 5\% 1W MF PRO1 XA01-	1	R17
AE10012	RES 10K 5\% 1W MF PRO1 XA01-	2	R7, R112
AE10018	MF RES 2W 5\% 33R PRO2 AE100	1	R18
AE10019	RES 1R5 5\% 2W MF PR02 XA01-	4	R245, R222, R211, R240
AE10027	100R 2W MF RESISTOR PRO2	1	R203
AG10007	RES W/W OR47 3W CA-RE	16	R115, R94, R121, R124, R147, R141, R168, R159, R126, R144, R118, R122, R91, R97, R66, R79
AJ10003	RES 10K 5\% 5W VERT XA01-	2	R93, R113
AJ10004	RES.20R 5W THICK FILM	2	R127, R145
AM10001	RES 47R 5\% 17W XA02-	1	R14
AP1301	MF 0.25W RES 1\% 10R BL	5	R27, R258, R235
AP1309	MF 0.25W RES 1\% 22R BL	2	R80, R157
AP1319	MF 0.25W RES 1\% 56R BL	22	R88, R151, R173, R139, R140, R58, R59, R73, R107, R108, R184, R185, R192, R195, R236, R233, R247, R257, R200, R206, R250, R232
AP1325	MF 0.25W RES 1\% 100R BL	13	R68, R138, R81, R64, R128, R167, R109, R106, R171, R156, R176, R169, R170
AP1333	MF 0.25W RES 1\% 220R BL	8	R57, R99, R100, R186, R134, R135, R30, R42
AP1337	AF 0.25W RES 1\% 330R BL	3	R82, R155, R33
AP1341	MF 0.25W RES 1\% 470R BL	8	R137, R146, R181, R61, R110, R111, R63, R189
AP1347	MF 0.25W RES 1\% 820R BL	2	R148, R74
AP1349	AP 0.25W RES 1\% 1K BL	18	$\begin{aligned} & \text { R48, R261, R188, R262, R87, } \\ & \text { R101, R102, R103, R83, } \\ & \text { R133, R152, R131, R132, } \\ & \text { R154, R25, R22, R19, R20 } \end{aligned}$
AP1361	MF 0.25W RES 1\% 3K3 BL	23	R96, R95, R116, R119, R129, R149, R164, R163, R142, R143, R123, R125, R105, R90, R69, R70, R9, R21, R214, R228, R204, R253, R13

AP1365	MF 0.25W RES 1\% 4K7 BL	1	R219
AP1366	MF 0.25W RES 1\% 5K1 BL	12	$\begin{aligned} & \text { R28, R44, R198, R197, R251, } \\ & \text { R201, R242, R260, R216, } \\ & \text { R225, R196, R231 } \end{aligned}$
AP1370	MF 0.25W RES 1\% 7K5 BL	1	R175
AP1373	MF 0.25W RES 1\% 10K BL	27	R98, R177, R179, R136, R54, R65, R263, R39, R264, R41, R51, R35, R23, R24, R199, R230, R256, R239, R210, R220, R243, R249, R166, R178, R180, R8
AP1375	MF 0.25W RES 1\% 12K BL	4	R234, R248, R241, R223
AP1376	MF 0.25W RES 1\% 13K BL	8	R89, R150, R104, R130, R212, R217, R255, R202
AP1377	MF 0.25W RES 1\% 15K BL	1	R165
AP1380	MF 0.25W RES 1\% 20K BL	18	R47, R56, R193, R187, R76, R161, R5, R6, R38, R40, R52, R174, R213, R226, R254, R205, R32, R85
AP1387	MF 0.25W RES 1\% 39K BL	2	R15, R16
AP1389	MF 0.25W RES 1\% 47K BL	9	$\begin{aligned} & \text { R29, R43, R26, R31, R49, } \\ & \text { R50, R34, R172, R92 } \end{aligned}$
AP1397	MF 0.25W RES 1\% 100K BL	15	```R183, R191, R72, R71, R10, R12, R53, R259, R229, R221, R207, R208, R209, R218, R244```
AP1405	MF 0.25W RES 1\% 220K BL	6	$\begin{aligned} & \text { R153, R67, R158, R77, R11, } \\ & \text { R45 } \end{aligned}$
AP1421	MF 0.25W RES 1\% 1M BL	9	$\begin{aligned} & \text { R60, R182, R62, R190, R1, } \\ & \text { R4, R2, R3, R55 } \end{aligned}$
AP1429	MF 0.25W RES 1\% 2M2 BL	4	R237, R246, R224, R238
AS0102R-0805F	SM0805 RES 1K 1\% 0.1W T200	2	R15, R16
AS0103R-0805F	SM0805 RES 10K 1\% 0.1W T200	3	R58, R61, R62
AS0104R-0805F	SM0805 RES 100K 1\% 0.1W T200	3	R60, R38, R35
AS0113R-0805F	SM0805 RES 11K 1\% 0.1W T200	4	R4, R11, R3, R10
AS0152R-0805F	SM0805 RES 1K5 1\% 0.1W T200	4	R34, R37, R56, R49
AS0432R-0805F	SM0805 RES 4K3 1\% 0.1W T200	7	$\begin{aligned} & \text { R5, R12, R6, R13, R30, R17, } \\ & \text { R29 } \end{aligned}$
AS0470R-0805F	SM0805 RES 47R 1\% 0.1W T200	4	R7, R14, R33, R36
AS0471R-0805F	SM0805 RES 470R 1\% 0.1W T200	7	R45, R46, R54, R57, R53, R51, R55
AS0512R-0805F	SM0805 RES 5K1 1\% 0.1W T200	8	R1, R2, R52, R59, R8, R9, R63, R64
BA0001	DIODE 1N4148	23	D6, D7, D27, D26, D15, D19, D8, D33, D43, D44, D20, D21, D28, D34, D16, D41, D4, D3, D2, D63, D58, D46, D18

BA0025

BA10004
BA10006
BA10008
BB0116
BB10001
BB10002
BB10005
BB10007
BB10011
BB10022
BC0217
BC10003

BC10004
BD0364

BD0365

BD0373

BD0374

BD0394R

BD0395R

BD0396
BD10003
BD10011
BD10014
BD10020
BD10026
BD10032
BD10035

DIODE FAST 400V 1.7A BYD73G

DIODE IN4004 CA-DB	4	
ZENER DIODE 500MW 10V	CA-DB	4
DIODE SF1600 1A FAST	XD01-	2
ZENER DIODE 1.3W 47V		1
ZENER DIODE 20V 400MW	XD03-	1
ZENER DIODE 500MW 2V7	CA-DB	1
ZENER DIODE 500MV 15V	CA-DB	1
ZENER DIODE 500MW 4.7V5\% CA-DB	2	
ZENER DIODE 500MW 47V	CA-DB	4
ZENER DIODE 500MW 24VOLT 1	2	
DIODE BRIDGE 1.5A 400V W04	1	
RECTIFIER MUR1640CT	XD04-	12

BRIDGE REC 35A 600V
BF422 NPN TRANS

BF423 PNP TRANS

MJ15024 NPN POWER TRANS TO3 @

MJ15025 PNP POWER TRANS TO3 @

TRANSISTOR BC546BT NPN TAPED

TRANSISTOR BC556BT PNP TAPED

OPTO TRANSISTOR CNW11-AV1
TRANS ZTX550T/A XE01-
2SA872 TRANSISTOR TO220 CA-TF
MJE5731A TRANSISTOR CA-TF
TIP50
CA-TF
TRANS TIP122 TO220 XE01-
IGBT SGL50N60RUFD-TO264 XF07-
(A) MOSFET IRF 540 XE05-

D5, D39, D10, D25, D9, D38, D24, D42, D22, D32, D31, D29, D51, D55, D54, D50, D49
D40, D11, D37, D12
ZD13, ZD18, ZD20, ZD17
D14, D23
ZD2
ZD10
ZD3
ZD15
ZD1, ZD11
ZD5, ZD7, ZD4, ZD6
ZD9, ZD8
BR1
D52, D62, D59, D56, D48, D45, D61, D53, D60, D57, D47, D36

BR2
TR11, TR37, TR38, TR12, TR61, TR32, TR33, TR58, TR64, TR66, TR67, TR86

TR18, TR19, TR20, TR21, TR55, TR54, TR53, TR51, TR52, TR16, TR63, TR65, TR74, TR62

TR26, TR14, TR34, TR46,
TR83, TR89, TR60, TR73
TR72, TR59, TR88, TR79, TR39, TR48, TR17, TR28

TR22, TR50, TR3, TR1, TR8, TR10, TR69, TR71, TR80, TR82, TR85, TR87, TR76, TR78, TR47, TR23
TR44, TR27, TR4, TR5, TR9, TR68, TR75, TR81, TR84, TR70, TR77

OPT1
TR6, TR7
TR30, TR31, TR35, TR36
TR13, TR25, TR57, TR45
TR56, TR15, TR2
TR49
TR24, TR29
FET1, FET3, FET5, FET6,

BD10042	ZTX651 NPN TRANSISTOR	2	TR40, TR42
BD10043	ZTX751 PNP TRANSISTOR	2	TR41, TR43
BE0403	TL074CN QUAD OP AMP	1	IC2
BE0413	JRC DUAL OP AMP 072BDE	3	IC9, IC10, IC4
BE0417	V.REG $7915-15 \mathrm{~V}$ 1A	1	IC8
BE0428	NE5532P/NJM5532D DUAL OP AMP @	2	IC3, IC5
BE0503	TL431 SHUNT REGULATOR	1	D1
BE10012	LM35-DZ (SRX) IC CA-TF	2	IC11, IC12
BE10030	V.REG 7815 +15V 1A	1	IC7
BK10008	IC MICROC PIC16C57-04P XG04-	1	IC1
BS0005R-SOT23	BAV99 SM DIODE	6	D1, D2, D5, D6, D7, D8
BS0506R-SOT23	NPN TRANS BC846B	1	TR2
BS10043	ANALOG SW.DG411 QUAD SM	1	IC2
BS7001R-SO8	TL072CD SM DUAL OP AMP \#	1	IC8
BS7009R-SO8	NE5532 SM DUAL OP AMP \#	2	IC1, IC3
BZ10000	(A) PWM CONT SG3525AN XF04-	1	IC6
BZ10002	!THERMISTOR MAIN VOLTAGE CA-DB	1	TH1
CA0026	M/LAYER CAP .1UF 63V	18	$\begin{aligned} & \text { C98, C90, C86, C86, C97, } \\ & \text { C105, C101, C102, C117, } \\ & \text { C144, C13, C36, C26, C27, } \\ & \text { C30, C31, C35 } \end{aligned}$
CA0027	M/LAYER CRMC CAP 10N 100V	4	C2, C3, C4, C5
CA0030	M/LAYER CRMC CAP 50V 4N7	2	C18, C20
CA0038R	C/CAP 0.2"TAPED 100V 15PF	2	C17, C19
CA0041R	C/CAP 0.2"TAPED 100V 47PF	10	$\begin{aligned} & \text { C62, C76, C110, C123, C111, } \\ & \text { C145, C140, C115, C116, } \\ & \text { C128 } \end{aligned}$
CA0044R	C/CAP 0.2"TAPED 100V 100PF	2	C46, C95
CA0045R	C/CAP 0.2"TAPED 100V 150PF	2	C6, C25
CA10023	C/CAP 1000V 470PF XC03-	4	C100, C56, C41, C68, C7
CC0238	MICRO-BOX 5MM 5\% 63V 1N	3	C70, C69, 999
CC0242	MICRO-BOX 5MM 5\% 63V 4N7	14	$\begin{aligned} & \text { C51, C148, C151, C125, } \\ & \text { C135, C60, C81, C88, C154, } \\ & \text { C155, C152, C153, C57, C78 } \end{aligned}$
CC0246	MICRO-BOX 5MM 5\% 63V 22N	2	C1, C6
CC0250	MICRO-BOX 5MM 5\% 100V 100N	10	C49, C52, C96, C92, C85, C40, C34, C118, C146, C127
CC0251	MICRO-BOX 5MM 5\% 100V 220N	20	C38, C39, C80, C83, C108, C109, C55, C59, C107, C106, C71, C134, C136, C8, C141, C142, C72, C119, C122,

CC0288	POLYPROPYLENE 2200PF 250VAC (C	4	C14, C15
CC10076	CAP POLYPROP 220N 400V 5\%XC09-	3	C63, C64, C65
CC10077	POLY-CAP 400V 1U XC09-	2	C2, C66
CE0403	VERT ELEC 0.2"TPD 100UF 10V SK	5	C37, C103, C67
CE0416	VERT ELEC 0.2"TPD 2.2UF/50 SSP	4	C48, C77, C94, C61
CE0445	VERT ELEC 1UF 63V SKP	3	C53, C84, C104
CE0462	VERT ELEC 10UF/63V 5X11MMSKP	18	$\begin{aligned} & \text { C89, C93, C12, C24, C21, } \\ & \text { C112, C139, C129, C147, } \\ & \text { C73, C120, C124, C130, } \\ & \text { C133 } \end{aligned}$
CE0467	VERT ELEC 4700/100V LPW	4	C113, C137, C138, C114
CE10003	ELEC/LYTIC RAD 200V 1800	6	$\begin{aligned} & \mathrm{C} 22, \mathrm{C} 23, \mathrm{C} 44, \mathrm{C} 45, \mathrm{C} 32 \text {, } \\ & \mathrm{C} 33 \end{aligned}$
CE10004	ELEC/LYTIC RAD 40 V 2200 XC06-	3	C11, C28, C29
CE10005	ELEC/LYTIC RAD 63V 1000 XC06-	1	C75
CE10009	NON-POL 10V 100UF JAMIC	10	$\begin{aligned} & \text { C149, C150, C58, C79, C3, } \\ & \text { C9, C4, C10, C16, C43 } \end{aligned}$
CE10033	ELEC/L 63V 220UF 105 C XC06-	4	C74, C82, C126, C132
CS1221R-1206J	CAP CRMC 220PF 5\% 50V NPO	4	C25, C26, C27, C28
CS7104R-1206K	CAP CRMC 100NF 10\% 50V X7R	5	C10, C12, C23, C24, C33
CX10000	!CAP 275 V 1 UF X2 XC09-	1	C2
D-C300A-01	POT 16MM 10K LIN RD1610 A0X-P	2	P1, P2
DG10010	SWITCH ROUND SPST XK04-	1	SW1
DZ10012	RELAY SPCO 16A 48V XK06-	2	RLY1, RLY2
FA10002	40W IDC CONN SIDE EJECT XL04-	1	
FA10003	34 W IDC CONN SIDE EJECT XL04-	1	
FF0728	28WY DIL IC SKT DUAL WIPE TIN	1	
FF10003	PC JUMPER XL02-	8	
FF10019	BINDING POST ASSY 4MM XL05-	1	
FF10022	SPADE TAB VERT PC 0.125C	2	
FF10030	4 POLE SKT - SPEAKON CA-CO	2	CN1, CN2
FF10046	2W 0.1 ST\&F/L CONN HDR CA-CO	3	CN13, CN14, CN17
FF10055	SKT 1X12 SIDE ENTRY \quad X	1	
FF10063	CONN. 34W BOX GOLD XLO4-	1	
FF10073	HEADER 2X17 R/A XL04-	1	
FF10079	TERMINAL BLOCK-3 WAY XL04-	2	CN1, CN2

FF10080	PLUG 3 WAY FREE KLIPPON XLO4-	2	
FF10083	5 WAY PIN HDR.LATCH TYPE XLO4-	1	
FF10085	HEADER 1×12 THU VERT XL04-	1	
FG10006	PCB FASTON	11	
FH0760	REAN SLIMJACK S203-84G	2	CN4, CN5
FJ10005	!IEC FILTERED 10AMP CONN XL02-	1	CN3
FJ8019	!LEAD 10A USE FJ8016:17:18	1	
FK0986	XLR CON FML R/A CHAS PIN MTL	2	CN7, CN8
FK0987	XLR CON ML R/A CHAS PIN MTL	2	CN9, CN10
HB10042	TRANS 240V/11-0-11V 4VA	1	TX3
HB10045	TRANSFORMER PT42E XP01-	1	TX6
HC0021	FERRITE BEAD AX 5X3.5MM TAPED	4	FB1, FB2, FB3, FB4
HC0028	INDUCTOR 10UH TOKO R621LY-100K	2	L2, L3
HC10012	INDUCTOR 47UH RADIAL	1	L4
H-C1100A-01	TRANSFORMER-MAINS P2X1100	1	TX5
H-C300A-01	TRANSFORMER FET DRIVER W	1	TX4
H-C300B-01	CHOKE COM MODE E251	1	L1
H-C300E-01	CHOKE PULSE OUTPUT	2	L1, L2
J-C300A-01	LIGHTPIPES 8+1-PULSE WAS J	1	
J-C300B-01	LIGHTPIPE LARGE - PULSE WAS J	1	
JS0004	LED RED SML-010UT	5	LD5, LD6, LD16, LD13, LD11
JS0005	LED YEL SML-010YT	4	LD9, LD14, LD15, LD17
JS0006	LED GRN SML-010PT	2	LD1, LD2
KA0267	SIF LIVE 4/8 POT KNOB GREY	2	
KZ10000	POT COVER - PULSE XV02-	2	
LA0008	7/0.2 RED WIRE	0.16	
LA0041	16/0.2 GREEN/YELLW WIRE	0.12	
LA0051	1/0.6 SINGLE STRAND WIRE PINK	0.05	
L-B100A-02	EARTH WIRE MAINS TO CHASS	1	
L-C300A-02	WIREFORM ASSY.FAN-80MM $\times 12 \mathrm{~V}$	2	
L-C300B-03	WIRING LOOM - PULSE WAS -	1	
L-C300C-02	WIRING LOOM-PULSE FIPANEL	2	
L-C300E-01	INDUCTOR WIRE DETAIL	1	
LF0572	H20 NEOPRENE SLEEVES	3	
LF0573	H30 X 20 BLACK SLEEVE	2	
LF0596	CABLE TIE 8.0 NARROW	7	
M-C250A-01	250 \& 650 SOFTWARE	1	

NA0084	M3X6MM PAN POZI BLK SCREW	4
NA0384	M2.5X6MM PAN POZ BLK TAPTITE	8
NA0392	SCREW PLAS NO8X3/8" BLK	2
NA0397	M3X6 FLANGE SCREW BLK POZI	10
NA0424	NO.8X5/8" PAN POZI BLK Y CUT	4
NA10002	M3.6 PAN POZI TAPTITE ZN XW02-	4
NA10015	M3X16 PAN POZI SCR BZP CA-FI	32
NA10042	M3X16 SCREW BZP HEX CA-FI	2
NA10045	M4X6 PAN POZI SCR BLK CA-FI	4
NA10047	M3X10MM P/P ZINC CA-FI	1
NA10050	M5X20 TORX TAPTITE BK XW05-	4
NA10051	M5X16 TORX TAPTITE BLK XW05-	8
NB0113	M3 NYLON INSERT NUT	1
NB0122	M3 PLAIN NUT	6
NB10005	M3.5 NUT FULL BZP CA-FI	32
NB10014	NUT HALF M4 XW13-	4
N-B966B-01	ADHESIVE STRIP 10X10 966 WAS N	11
NC0221	M3 S/PROOF WASHER	6
NC0256	M3 PLAIN WASHER	3
NC10018	WASHER-PLAS 9.5X4.75X0.5 XW07-	8
NC10022	M4 SPRING WASHER STL.BZP	32
ND10004	PILLAR METAL M3X10MM XW10-	2
ND10025	SPACER F/PANEL - PULSE XW10-	4
ND10027	SPACER NYLON FAN SCREW XW10-	4
ND10040	SPACER-NYLON 6.35X3.56X6.35LG.	4
NE0408	M3 SOLDER TAG	1
NZ10000	ADHESVIE BCK MIN SUPPORT CA-EL	2
P-C1100B-01	INSULATOR-CAPACITORS	1
P-C1100D-01	SPRING CLIP P-C11	1
P-C1100E-01	BADGE - PULSE 2X1100	1
P-C300A-02	INSULATOR HEATSINK - 250 XV01-	2
P-C300B-03	INSULATOR BASE TRAY-PULSE	1
P-C300E-01	FRONT PANEL THERM.INSUL.	2
P-C300F-01	HEATSINK-CUT \& PUNCH	2
P-C300J-03	LID AMPLIFIER - PULSE	1
P-C300M-01	SPACER FAN (CUT) - PULSE	2
P-C300N-01	FAN SPACER FOAM - PULSE	2

P-C650A-01	SPACER - BINDING POST	1
P-CR1100A-01	P2X1000 BASE TRAY	1
P-CR1100C-02	1100 SUB FRONT PANEL	1
P-CR300C-01	BADGE - CROWN	1
P-CR3001-02	FRONT PNL PUNCHED- CROWN	1
R-C1100A-05-AF	1100 PULSE MAIN PCB ASSY	1
R-C650B-02-AF	650 FRONT PANEL PCB ASSY R-650	1
R-C650B-02-SC	650 FRONT PANEL PCB -SC R-650	1
R-C650B-02-SM	650 FRONT PANEL PCB-SM R-650	1
R-CR650C-01-AF	CROWN 650 REAR PANEL PCB ASSY.	1
S-C1100A-05	PCB MAIN BOARD - P2X1100	1
S-C650B-02	PCB FRONT PANEL BRD.P2X650	1
S-CR650C-01	PCB CROWN OUTPUT BRD.P2X650	1
TA10022	CARTON CUSTOM PACK (WAS	1
TZ10001	GRIP BAG A4 XT01-	1
TZ10002	GRIP BAG SMALL $4 \times 8 \mathrm{IN}$ XT01-	1
TZ10004	POLYBAG -26X24X250 GAUGE CA-MI	1
ZA0395-01	FCC LABEL SELF ADH 70X15	1
ZA10004	STICKER-SAFETY EARTH XT03-	1
ZA10020	LABEL SHOCK \& MOISTURE XT03-	1
ZA10027	LABEL UL STD. 6500 55X25 XT03-	1
ZA10039	FOAM SEALING STRIP XT05-	1.25
ZA10081	LABEL CARTON-CROWN PULSE	1
ZC0240	REG KOOL-PAD,SELF ADH 105SP900	5
ZC10014	HEATSINK TO220 CLIP ON CA-HA	1
ZC10018	CLIP HEATSINK TO-247 XW13-	31
ZC10029	TO3 INSULATING WASHER	16
ZC10030	TO3 PLASTIC COVER	2
ZD0332	FUSEHOLDER 10A 250V PCB MNT	1
ZD0334	20MM S/ENC PCB MNGT FUSEHOLDER	2
ZD10000	FUSE 20MM T200MA XM01-	1
ZD10002	FUSE 20MM T500MA XM01-	1
ZD10014	!FUSE 6.3 AMP S/D SLOW T CA-EL	1
ZE10007	CER RESONATOR 3.58MHZ XIO1-	1
ZM10090-01	MANUAL CROWN P2X1100 V1.0	1
ZZ2893R	FILTER 100PF RFI TAPED	4

XT1

RF1, RF2, RF3, RF4

Pulse 4x300 Parts List

Part Number	Description	Qty	Designator(s)
AE0047	MF 1W RES 5\% 4R7 PRO1	4	R77, R115, R117, R85
AE0100	MF 1W RES 5\% 10R PRO1	9	R288
AE10002	RES 47K0 5\% 1W MF PRO1 XA01-	4	R39, R40, R86, R121
AE10010	RES 3R3 5\% 1W MF PRO1 XA01-	1	R21
AE10012	RES 10K 5\% 1W MF PRO1 XA01-	1	R289
AE10018	MF RES 2W 5\% 33R PRO2 AE100	1	R22
AE10027	100R 2W MF RESISTOR PRO2	1	R299
AE10030	RES.2K2 5\% 1W PRO1 TYPE	4	R190, R54, R153, R281
AG10007	RES W/W OR47 3W CA-RE	16	R257, R244, R248, R231, R131, R122, R116, R100, R74, R84, R92, R107, R219, R210, R223, R236
AJ10002	RES 50R 5W THICK FILM XA01-	2	R28, R142
AJ10003	RES 10K 5\% 5W VERT XA01-	2	R30, R102
AM10001	RES 47R 5\% 17W XA02-	1	R16
AP1301	MF 0.25W RES 1\% 10R BL	1	R25
AP1309	MF 0.25W RES 1\% 22R BL	4	R215, R80, R216, R252
AP1319	MF 0.25W RES 1\% 56R BL	28	R221, R261, R262, R263, R179, R188, R189, R89, R52, R53, R135, R136, R137, R175, R119, R166, R68, R69, R70, R154, R155, R246, R170, R283, R282, R205, R204, R206
AP1322	MF 0.25W RES 1\% 75R BL	8	R201, R264, R64, R138, R67, R141, R200, R267
AP1325	MF 0.25W RES 1\% 100R BL	11	R216, R73, R81, R132, R209, R125, R258, R251, R181, R165, R169
AP1333	MF 0.25W RES 1\% 220R BL	14	R187, R51, R109, R110, R238, R239, R156, R97, R98, R284, R228, R229, R34, R45
AP1337	AF 0.25W RES 1\% 330R BL	5	R217, R82, R124, R250, R37
AP1341	MF 0.25W RES 1\% 470R BL	16	R260, R272, R276, R134, R144, R57, R148, R63, R71, R59, R150, R199, R207, R195, R278
AP1347	MF 0.25W RES 1\% 820R BL	20	R253, R254, R177, R232, R233, R104, R128, R103,

R127, R176, R78, R79, R105, R106, R168, R213, R214, R234, R235, R176

AP1349	AP 0.25W RES 1\% 1K BL	30	$\begin{aligned} & \text { R268, R241, R242, R220, } \\ & \text { R240, R218, R49, R270, } \\ & \text { R112, R113, R83, R88, } \\ & \text { R111, R174, R271, R94, } \\ & \text { R95, R96, R120, R123, } \\ & \text { R269, R225, R226, R227, } \\ & \text { R247, R249, R24, R208 } \end{aligned}$
AP1361	MF 0.25W RES 1\% 3K3 BL	2	R11, R290
AP1365	MF 0.25W RES 1\% 4K7 BL	1	R172
AP1366	MF 0.25W RES 1\% 5K1 BL	12	R274, R202, R65, R146, R61, R140, R197, R266, R296, R297, R32, R47
AP1369	MF 0.25W RES 1\% 6K8 BL	8	R222, R90, R114, R243, R118, R93, R245, R224
AP1370	MF 0.25W RES 1\% 7K5 BL	1	R180
AP1373	MF 0.25W RES 1\% 10K BL	15	R137, R108, R99, R230, R286, R287, R44, R42, R23, R26, R29, R27, R178, R161, R164, R182, R298
AP1377	MF 0.25W RES 1\% 15K BL	1	R160
AP1380	MF 0.25W RES 1\% 20K BL	24	R186, R273, R212, R191, R50, R72, R76, R55, R145, R157, R133, R219, R62, R152, R265, R255, R198, R280, R12, R13, R14, R15, R9, R10, R43, R41, R36, R87
AP1387	MF 0.25W RES 1\% 39K BL	4	R17, R18, R19, R20
AP1388	MF 0.25W RES 1\% 43K BL	8	R275, R203, R66, R147, R60, R139, R196, R265
AP1389	MF 0.25W RES 1\% 47K BL	13	$\begin{aligned} & \text { R211, R291, R75, R143, } \\ & \text { R130, R256, R33, R46, R31, } \\ & \text { R35, R38, R158, R91 } \end{aligned}$
AP1397	MF 0.25W RES 1\% 100K BL	4	R292, R293, R259, R101
AP1405	MF 0.25W RES 1\% 220K BL	11	$\begin{aligned} & \text { R184, R185, R163, R171, } \\ & \text { R159, R162, R173, R183, } \\ & \text { R294, R295, R48 } \end{aligned}$
AP1421	MF 0.25W RES 1\% 1M BL	16	R277, R192, R56, R149, R58, R151, R194, R279, R1, R2, R3, R4, R5, R6, R7, R8
AS0102R-0805F	SM0805 RES 1K 1\% 0.1W T200	4	R70, R71, R72, R73
AS0103R-0805F	SM0805 RES 10K 1\% 0.1W T200	2	R58, R62

AS0104R-0805F	SM0805 RES 100K 1\% 0.1W T200	5	R35, R38, R41, R44, R60
AS0113R-0805F	SM0805 RES 11K 1\% 0.1W T200	8	R3, R4, R10, R11, R17, R18, R24, R25
AS0152R-0805F	SM0805 RES 1K5 1\% 0.1W T200	7	$\begin{aligned} & \text { R34, R37, R40, R43, R49, } \\ & \text { R50, R56 } \end{aligned}$
AS0432R-0805F	SM0805 RES 4K3 1\% 0.1W T200	14	R5, R6, R29, R12, R13, R30, R19, R20, R31, R26, R27, R32, R69, R74
AS0470R-0805F	SM0805 RES 47R 1\% 0.1W T200	8	$\begin{aligned} & \text { R7, R14, R21, R28, R33, } \\ & \text { R36, R39, R42 } \end{aligned}$
AS0471R-0805F	SM0805 RES 470R 1\% 0.1W T200	9	R45, R46, R47, R48, R54, R55, R51, R53, R57
AS0512R-0805F	SM0805 RES 5K1 1\% 0.1W T200	16	R1, R2, R8, R9, R15, R16, R22, R23, R52, R59, R63, R64, R65, R66, R67, R68
AS1103R-1206F	SM1206-RES 10K 1\% 1/8W T200	1	R61
BA0001	DIODE 1N4148	53	D51, D52, D69, D65, D75, D76, D84, D85, D74, D53, D54, D56, D7, D8, D19, D22, D10, D30, D31, D42, D9, D43, D12, D29, D37, D38, D24, D27, D14, D15, D6, D35, D5, D36, D33, D16, D82, D83, D58, D59, D70, D72, D49, D80, D48, D81, D61, D77, D3, D4, D2, D47, D21
BA0025	DIODE FAST 400V 1.7A BYD73G	9	$\begin{aligned} & \text { D23, D41, D39, D40, D44, } \\ & \text { D68, D67, D64, D63 } \end{aligned}$
BA10004	DIODE IN4004 CA-DB	8	$\begin{aligned} & \text { D78, D57, D13, D34, D11, } \\ & \text { D32, D55, D79 } \end{aligned}$
BB0116	ZENER DIODE 1.3W 47V	1	ZD5
BB10001	ZENER DIODE 20V 400MW XD03-	1	ZD12
BB10002	ZENER DIODE 500MW 2V7 CA-DB	9	$\begin{aligned} & \text { ZD18, ZD15, ZD2, ZD7, ZD4, } \\ & \text { ZD9, ZD17, ZD20, ZD6 } \end{aligned}$
BB10005	ZENER DIODE 500MV 15V CA-DB	1	ZD13
BB10007	ZENER DIODE 500MW 4.7V5\% CA-DB	2	ZD22, ZD23
BB10011	ZENER DIODE 500MW 47V CA-DB	8	$\begin{aligned} & \text { ZD21, ZD16, ZD3, ZD10, } \\ & \text { ZD1, ZD8, ZD14, ZD19 } \end{aligned}$
BB10022	ZENER DIODE 500MW 24VOLT 1	2	ZD11, ZD24
BC0217	DIODE BRIDGE 1.5A 400V W04	1	BR1
BC10003	RECTIFIER MUR1640CT XD04-	4	D45, D46, D50, D60
BC10004	BRIDGE REC 35A 600V	1	BR2
BD0364	BF422 NPN TRANS	14	TR80, TR81, TR58, TR8, TR35, TR36, TR9, TR52, TR22, TR21, TR47, TR69,

BD0365	BF423 PNP TRANS	20	TR64, TR65, TR16, TR17, TR18, TR19, TR42, TR41, TR40, TR39, TR12, TR87, TR86, TR84, TR85, TR60, TR89, TR66, TR67, TR45
BD0373	MJ15024 NPN POWER TRANS TO3 @	8	TR73, TR57, TR27, TR11, TR37, TR51, TR82, TR94
BD0374	MJ15025 PNP POWER TRANS TO3 @	8	TR79, TR93, TR34, TR48, TR14, TR29, TR62, TR75
BD0394R	TRANSISTOR BC546BT NPN TAPED	11	TR68, TR20, TR38, TR83, TR98, TR49, TR1, TR5, TR7, TR55, TR23
BD0395R	TRANSISTOR BC556BT PNP TAPED	7	TR90, TR44, TR13, TR61, TR6, TR4, TR53
BD0396	OPTO TRANSISTOR CNW11-AV1	1	OPT1
BD10011	2SA872 TRANSISTOR TO220 CA-TF	8	TR76, TR77, TR30, TR31, TR26, TR28, TR74, TR72
BD10014	MJE5731A TRANSISTOR CA-TF	8	TR71, TR59, TR25, TR10, TR33, TR46, TR78, TR91
BD10020	TIP50 CA-TF	5	TR88, TR43, TR15, TR63, TR2
BD10026	TRANS TIP122 TO220 XE01-	1	TR50
BD10032	IGBT SGL50N60RUFD-TO264 XF07-	2	TR24, TR32
BD10042	ZTX651 NPN TRANSISTOR	2	TR56, TR95
BD10043	ZTX751 PNP TRANSISTOR	4	TR3, TR54, TR96, TR97
BE0403	TL074CN QUAD OP AMP	1	IC2
BE0417	V.REG 7915 -15V 1A	1	IC8
BE0428	NE5532P/NJM5532D DUAL OP AMP @	2	IC5, IC4
BE0503	TL431 SHUNT REGULATOR	1	D1
BE10012	LM35-DZ (SRX) IC CA-TF	2	IC9, IC10
BE10030	V.REG 7815 +15V 1A	1	IC7
BK10008	IC MICROC PIC16C57-04P XG04-	1	IC1
BS0005R-SOT23	BAV99 SM DIODE	12	D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12
BS0506R-SOT23	NPN TRANS BC846B	1	TR2
BS10043	ANALOG SW.DG411 QUAD SM	2	IC2, IC4
BS7002	TL074A SM QUAD OP-AMP \#	1	IC7
BS7009R-SO8	NE5532 SM DUAL OP AMP \#	4	IC1, IC3, IC5, IC6

BZ10000	(A) PWM CONT SG3525AN XF04-	1	IC6
BZ10002	!THERMISTOR MAIN VOLTAGE CA-DB	1	TH1
CA0026	M/LAYER CAP .1UF 63V	17	C150, C110, C46, C39, C79, C72, C40, C80, C104, C115, C119, C48, C96, C70, C142, C111, C151, C140, C31, C32, C153, C154, C82, C19, C93, C155, C157, C92, C156, C94, C109, C158
CA0027	M/LAYER CRMC CAP 10N 100V	8	$\begin{aligned} & \text { C139, C130, C56, C69, C71, } \\ & \text { C49, C57, C141, C121, C131 } \end{aligned}$
CA0030	M/LAYER CRMC CAP 50V 4N7	2	C116, C47, C24, C26
CA0038R	C/CAP 0.2"TAPED 100V 15PF	2	C23, C25
CA0041R	C/CAP 0.2"TAPED 100V 47PF	4	C132, C58, C55, C127
CA0044R	C/CAP 0.2"TAPED 100V 100PF	4	
CA0045R	C/CAP 0.2"TAPED 100V 150PF	2	$\begin{aligned} & \text { C14, C15, C16, C17, C4, } \\ & \text { C160 } \end{aligned}$
CA10023	C/CAP 1000V 470PF XC03-	4	C103, C53, C65, C162
CC0238	MICRO-BOX 5MM 5\% 63V 1N	5	C163, C164, C165, C166, C102
CC0242	MICRO-BOX 5MM 5\% 63V 4N7	4	C116, C47, C24, C26
CC0244	MICRO-BOX 5MM 5\% 63V 10N	8	$\begin{aligned} & \text { C2, C3, C4, C5, C8, C9, C10, } \\ & \text { C11 } \end{aligned}$
CC0246	MICRO-BOX 5MM 5\% 63V 22N	4	C1, C6, C7, C12
CC0250	MICRO-BOX 5MM 5\% 100V 100N	17	$\begin{aligned} & \text { C106, C147, C114, C37, } \\ & \text { C45, C78, C85, C41, C75, } \\ & \text { C152, C112, C145, C64, } \\ & \text { C17, C18, C19, C20 } \end{aligned}$
CC0288	POLYPROPYLENE 2200PF 250VAC (C	2	C1, C3, C161, C20
CC10077	POLY-CAP 400V 1U XC09-	2	C62, C38
CC10078	POLY-CAP 400V 470N XC09-	1	C61
CE0403	VERT ELEC 0.2"TPD 100UF 10V SK	13	
CE0445	VERT ELEC 1UF 63V SKP	5	C124, C52, C66, C136, C101
CE0446	VERT ELEC 100UF 25V SKP	4	C17, C18, C19, C20
CE0462	VERT ELEC 10UF/63V 5X11MMSKP	20	$\begin{aligned} & \text { C100, C107, C86, C91, C84, } \\ & \text { C88, C97, C105, C18, C30, } \\ & \text { C27, C74, C120, C129, } \\ & \text { C125, C133, C9, C11, C13, } \\ & \text { C15 } \end{aligned}$
CE0467	VERT ELEC 4700/100V LPW	2	C117, C118
CE10003	ELEC/LYTIC RAD 200V 1800	6	$\begin{aligned} & \text { C28, C29, C42, C43, C33, } \\ & \text { C34 } \end{aligned}$

CE10004	ELEC/LYTIC RAD 40V 2200 XC06-	3	C5, C22, C159
CE10005	ELEC/LYTIC RAD 63V 1000 XC06-	1	C76
CE10009	NON-POL 10V 100UF JAMIC	17	$\begin{aligned} & \text { C143, C126, C144, C135, } \\ & \text { C149, C63, C148, C54, C6, } \\ & \text { C7, C8, C9, C10, C11, C12, } \\ & \text { C13, C21 } \end{aligned}$
CE10033	ELEC/L 63V 220UF 105 C XC06-	4	C73, C81, C128, C134
CS1221R-1206J	CAP CRMC 220PF 5\% 50V NPO	8	$\begin{aligned} & \text { C25, C26, C27, C28, C29, } \\ & \text { C30, C31, C32 } \end{aligned}$
CS7104R-0805K	CAP CRMC 100NF 10\% 50V X7R	4	C10, C12, C14, C16
CS7104R-1206K	CAP CRMC 100NF 10\% 50V X7R	6	$\begin{aligned} & \text { C21, C22, C23, C24, C33, } \\ & \text { C34 } \end{aligned}$
CX10000	!CAP 275V 1UF X2 XC09-	1	C2
CZ10001	100N 630V POLYP.CAP.22.5 MM PT	2	
D-C300A-01	POT 16MM 10K LIN RD1610 A0X-P	4	P1, P2, P3, P4
DG10010	SWITCH ROUND SPST XK04-	1	
DJ10006	SWITCH SLIDE DPDT 30A NO LE	2	SW1, SW2
DZ10012	RELAY SPCO 16A 48V XK06-	2	RLY1, RLY2
FA10002	40W IDC CONN SIDE EJECT XL04-	1	CN11
FA10003	$34 W$ IDC CONN SIDE EJECT XL04-	1	
FF0728	28WY DIL IC SKT DUAL WIPE TIN	1	
FF10003	PC JUMPER XLO2-	16	
FF10022	SPADE TAB VERT PC 0.125C	2	
FF10030	4 POLE SKT - SPEAKON CA-CO	4	CN1, CN2, CN3, CN4
FF10046	2W 0.1 ST\&F/L CONN HDR CA-CO	3	
FF10055	SKT 1X12 SIDE ENTRY X	1	CN10
FF10063	CONN. 34W BOX GOLD XLO4-	1	
FF10073	HEADER 2X17 R/A XL04-	1	CN17
FF10083	5 WAY PIN HDR.LATCH TYPE XL04-	1	
FF10085	HEADER 1×12 THU VERT XL04-	1	
FG10006	PCB FASTON	11	
FH0760	REAN SLIMJACK S203-84G	4	CN2, CN3, CN4, CN5
FJ10005	!IEC FILTERED 10AMP CONN XL02-	1	CN1
FJ8019	!LEAD 10A USE FJ8016:17:18	1	
FK0986	XLR CON FML R/A CHAS PIN MTL	4	CN6, CN7, CN8, CN9
HB10042	TRANS 240V/11-0-11V 4VA	1	TX5
HB10045	TRANSFORMER PT42E XP01-	1	TX8

HC0021	FERRITE BEAD AX 5X3.5MM TAPED	2	L5, L6
HC0028	INDUCTOR 10UH TOKO R621LY-100K	2	L2, L3
HC10012	INDUCTOR 47UH RADIAL	1	L4
H-C300A-01	TRANSFORMER FET DRIVER W	1	TX6
H-C300B-01	CHOKE COM MODE E251	1	L1
H-C300C-01	TRANSFORMER SMPS P4X300	1	TX-7
H-C300E-01	CHOKE PULSE OUTPUT	4	L1, L2, L3, L4
J-C300A-01	LIGHTPIPES 8+1-PULSE WAS J	1	
J-C300B-01	LIGHTPIPE LARGE - PULSE WAS J	1	
JS0004	LED RED SML-010UT	7	$\begin{aligned} & \text { LD5, LD6, LD7, LD8, LD11, } \\ & \text { LD13, LD16 } \end{aligned}$
JS0005	LED YEL SML-010YT	5	LD14, LD15, LD9, LD10, LD17
JS0006	LED GRN SML-010PT	4	LD1, LD2, LD3, LD4
KA0267	SIF LIVE 4/8 POT KNOB GREY	4	
KZ10000	POT COVER - PULSE XV02-	4	
LA0008	7/0.2 RED WIRE	0.16	
LA0041	16/0.2 GREEN/YELLW WIRE	0.48	
LA0051	1/0.6 SINGLE STRAND WIRE PINK	0.22	
L-B100A-02	EARTH WIRE MAINS TO CHASS	4	
L-C300A-02	WIREFORM ASSY.FAN-80MM $\times 12 \mathrm{~V}$	2	
L-C300B-03	WIRING LOOM - PULSE WAS -	1	
L-C300C-02	WIRING LOOM-PULSE FIPANEL	2	
L-C300E-01	INDUCTOR WIRE DETAIL	4	
LF0572	H20 NEOPRENE SLEEVES	6	
LF0573	H30 X 20 BLACK SLEEVE	2	
LF0596	CABLE TIE 8.0 NARROW	7	
M-C250A-01	250 \& 650 SOFTWARE	1	
NA0084	M3X6MM PAN POZI BLK SCREW	4	
NA0384	M2.5X6MM PAN POZ BLK TAPTITE	8	
NA0392	SCREW PLAS NO8X3/8" BLK	2	
NA0397	M3X6 FLANGE SCREW BLK POZI	10	
NA0424	NO.8X5/8" PAN POZI BLK Y CUT	4	
NA10002	M3.6 PAN POZI TAPTITE ZN XW02-	4	
NA10015	M3X16 PAN POZI SCR BZP CA-FI	32	

NA10042	M3X16 SCREW BZP HEX CA-FI	2
NA10045	M4X6 PAN POZI SCR BLK CA-FI	4
NA10047	M3X10MM P/P ZINC CA-FI	1
NA10050	M5X20 TORX TAPTITE BK XW05-	4
NA10051	M5X16 TORX TAPTITE BLK XW05-	8
NB0113	M3 NYLON INSERT NUT	1
NB0122	M3 PLAIN NUT	6
NB10005	M3.5 NUT FULL BZP CA-FI	32
NB10014	NUT HALF M4 XW13-	4
N-B966B-01	ADHESIVE STRIP 10X10 966 WAS N	16
NC0221	M3 S/PROOF WASHER	6
NC0249	M4 PLAIN STEEL WASHER ZNC CLR	32
NC0256	M3 PLAIN WASHER	3
NC10007	M3.5 WASHER PLAIN BZP CA-FI	8
NC10018	WASHER-PLAS 9.5X4.75X0.5 XW07-	8
NC10022	M4 SPRING WASHER STL.BZP	32
ND10004	PILLAR METAL M3X10MM XW10-	2
ND10025	SPACER F/PANEL - PULSE XW10-	4
ND10027	SPACER NYLON FAN SCREW XW10-	4
ND10040	SPACER-NYLON 6.35X3.56X6.35LG.	4
NE0408	M3 SOLDER TAG	4
NF10005	RIVET 3.2X11 BLACK CA-FI	8
NZ10000	ADHESVIE BCK MIN SUPPORT CA-EL	2
P-C1100D-01	SPRING CLIP P-C11	1
P-C300A-02	INSULATOR HEATSINK - 250 XV01-	2
P-C300B-03	INSULATOR BASE TRAY-PULSE	1
P-C300D-01	BADGE - PULSE 4X300	1
P-C300E-01	FRONT PANEL THERM.INSUL.	2
P-C300F-01	HEATSINK-CUT \& PUNCH	2
P-C300J-03	LID AMPLIFIER - PULSE	1
P-C300M-01	SPACER FAN (CUT) - PULSE	2
P-C300N-01	FAN SPACER FOAM - PULSE	2
P-CR300C-01	BADGE - CROWN	1

P-CR300G-01	BASE TRAY 4 CHAN - PULSE	1
P-CR300H-02	SUB PANEL 4 CHAN - PULSE	1
P-CR300I-02	FRONT PNL PUNCHED- CROWN	1
P-CR300L-01	PANEL SPEAKON - PULSE	1
R-C300A-06-PF	MAIN PCB ASSY.P4X300	1
R-C300B-03-AF	FRONT PANEL PCB ASSY	1
R-C300B-03-SM	FRONT PANEL PCB SM	1
$\begin{aligned} & \text { R-CR300C-01- } \\ & \text { AF } \end{aligned}$	CROWN SPEAKON PCB C300 ASSY.	1
$\begin{aligned} & \text { R-CR300D-01- } \\ & \text { AF } \end{aligned}$	CROWN BINDING POST PCB ASSY.	1
S-C300A-06	PCB C300 MAIN BOARD	1
S-C300B-03	PCB C300 FRONT PANEL	1
S-CR300C-01	PCB C300 CROWN SPEAKON BOARD.	1
TA10022	CARTON CUSTOM PACK (WAS	1
TZ10001	GRIP BAG A4 XT01-	1
TZ10002	GRIP BAG SMALL $4 \times 8 \mathrm{~N}$ XT01-	1
TZ10004	POLYBAG -26X24X250 GAUGE CA-MI	1
ZA0395-01	FCC LABEL SELF ADH 70×15	1
ZA10004	STICKER - SAFETY EARTH XT03-	1
ZA10020	LABEL SHOCK \& MOISTURE XT03-	1
ZA10027	LABEL UL STD. 6500 55X25 XT03-	1
ZA10039	FOAM SEALING STRIP XT05-	1.25
ZA10081	LABEL CARTON-CROWN PULSE	1
ZC0240	REG KOOL-PAD,SELF ADH 105SP900	6
ZC10014	HEATSINK TO220 CLIP ON CA-HA	1
ZC10018	CLIP HEATSINK TO-247 XW13-	21
ZC10029	TO3 INSULATING WASHER	16
ZC10030	TO3 PLASTIC COVER	2
ZD0332	FUSEHOLDER 10A 250V PCB MNT	1
ZD0334	20MM S/ENC PCB MNGT FUSEHOLDER	2
ZD10000	FUSE 20MM T200MA XM01-	1
ZD10002	FUSE 20MM T500MA XM01-	1
ZD10014	!FUSE 6.3 AMP S/D SLOW T CA-EL	1
ZE10007	CER RESONATOR 3.58MHZ XIO1-	1

RF1, RF2, RF3, RF4, RF5, RF6, RF7, RF8

[^0]: IH A Harman International Company
 © 2002-2005 Crown Audio®, Inc

